
CS395T: Continuous Algorithms, Part XV
Continuous random walks

Kevin Tian

1 Sampling from a convex body
In this lecture, we begin our study of sampling from continuous distributions (i.e., those which have
absolutely continuous densities with respect to the Lebesgue measure on Rd). To introduce key
analysis techniques for continuous random walks, we use the fundamental problem of producing
an approximately-uniform sample from a convex body K ⊆ Rd as a running example throughout
these notes. Specifically we study uniform sampling from convex bodies under membership oracle
access, i.e., we assume access to an oracle which takes as input x ∈ Rd, and tells us whether x ∈ K.

Sampling from a convex body is a prominent example of the more general problem of sampling from
a logconcave density on Rd (see Section 4, Part I for the relevant definitions). When µ ∝ exp(−f)
is a logconcave density on Rd, so f : Rd → R∪{∞} is convex, the assumption of value oracle access
to f grants us membership oracle access in the special case when f = χK is the 0-∞ characteristic
function of K. We will discuss continuous sampling settings beyond uniform densities on convex
bodies in the following lectures, which build upon the tools introduced here.

One reason that we base our exploration of continuous sampling in this uniform sampling problem
is historical: uniform sampling from a convex body has been a longstanding testbed for the de-
velopment of new techniques for continuous Markov chains. Indeed, the fact that polynomial-time
sampling was possible even in this special case was a surprising breakthrough when first estab-
lished by [DFK91]. For example, previous results by [Ele86, BF87] showed that it is impossible to
approximate the volume of a convex body up to an exponential factor in the dimension in deter-
ministic polynomial time, and [DF88] proved that it is #P-hard to exactly compute the volume.
By crucially leveraging randomness, [DFK91] showed how to use their convex body sampler to
estimate volume up to a 1± ε multiplicative factor with high probability in time poly(d, ε−1).

To do so, one can follow a standard reduction from counting to sampling. In particular, assuming
that B(1) ⊆ K ⊆ B(d), we can estimate Vol(K) as the product of volume ratios for sets Ki :=

K ∩ B(2
i
d ) over a sequence of indices 0 ≤ i ≤ d log2 d, i.e.,

Vol(K) = Vol(K0) ·
∏

0≤i≤bd log2 dc

Vol(Ki+1)

Vol(Ki)
= Vol(B(1)) ·

∏
0≤i≤bd log2 dc

Vol(Ki+1)

Vol(Ki)
.

Here we used that our containment assumptions imply K0 = B(1) and Kbd log2 dc+1 = K. Moreover,
each of the volume ratios we need to estimate, of the form

Vol(Ki+1)

Vol(Ki)
,

are Θ(1), so they can be efficiently estimated to multiplicative error via random sampling, simply
by checking what proportion of random samples from Ki+1 also fall in Ki. Finally, as we will see
in a future lecture, the assumption that B(1) ⊆ K ⊆ B(d) (up to a negligible fraction of the body)
can also be achieved via random sampling, by estimating an affine transformation which makes
the body isotropic,1 and applying concentration inequalities for logconcave densities.

The original [DFK91] algorithm, while polynomial-time, used ≈ d19 membership oracle queries to
compute a single sample. Since this seminal work, a long line of simplifications of the [DFK91]

1We say that a density π on Rd is isotropic if Ex∼π [x] = 0d and Ex∼π [xx>] = Id.
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framework, as well as new algorithmic tools, have considerably improved the query complexity of
sampling from a convex body [AK91, LS92, LS93, KLS97, LV06a, LV06b, LV06c, LV07, CV18,
JLLV21] and its extension, sampling general logconcave densities [KV25]. This lecture gives the
tools needed to obtain a basic sampler in a simple regime where the convex body is assumed to be
near-isotropic, and we only need low-accuracy guarantees. We will develop techniques for removing
both assumptions, and extending to general logconcave densities, in the following lectures.

In Sections 2 and 3, we begin by giving general-purpose tools for analyzing the convergence of
random walks in continuous space, which are not specialized to any particular random walk. We
specialize Sections 4 and 5 to the analysis of a particular Markov chain, the ball walk, a basic
building block for all algorithms we develop towards sampling convex bodies.

2 Mixing in the continuous setting

2.1 Preliminaries
Throughout these notes, for any density π over an event space E , we overload π(S) to mean
Prs∼π[s ∈ S] for any S ⊆ E , e.g., if π is a density over Rd, then π(S) denotes the probability a
sample from π falls in S ⊆ Rd. We let π? denote a target stationary density on Rd, which we
assume is absolutely continuous with respect to the Lebesgue measure.2

We consider Markov chains parameterized by transition distributions {Tx}x∈Rd , which are also
densities on Rd, so ∫

Tx(y)dy = 1 for all x ∈ Rd. (1)

We assume each Tx is lazy, which means that it puts a point mass of at least 1
2 on x, and that

its density on Rd \ {x} is absolutely continuous with respect to the Lebesgue measure. This is the
analog of Eq. (7), Part XIV, and as was the case there, laziness facilitates simpler proofs (but does
not meaningfully affect implementation). The {Tx}x∈Rd induce a random walk via the update

xk+1 ∼ Txk , for all k ≥ 0.

We denote the distribution that the random walk is initialized with by π0, and the distribution of
the kth iterate of the walk by πk. By definition of the random walk, for all k ≥ 0,

πk+1(x) =

∫
Ty(x)πk(y)dy. (2)

We additionally assume that the {Tx}x∈Rd are reversible with respect to π?, analogously to Defi-
nition 3, Part XIV. In the continuous setting, this means that for all (x,y) ∈ Rd × Rd,

π?(x)Tx(y) = π?(y)Ty(x). (3)

Under the assumption (3), it is simple to verify that π? is indeed a stationary distribution for the
random walk with updates (2). Indeed, supposing that πk = π? for some k, we have

πk+1(x) =

∫
Ty(x)π?(y)dy =

∫
Tx(y)π?(x)dy = π?(x), (4)

where the second equality used (3) and the third used (1). Moreover, given a set of proposal
distributions {Px}x∈Rd and a target stationary distribution π?, such that (3) is not necessarily
satisfied with respect to the {Px}x∈Rd one can apply the Metropolis-Hastings correction (Lemma
3, Part XIV) to obtain transition distributions which do satisfy (3), by letting

Tx(y) := Px(y) min

(
1,
π?(y)Py(x)

π?(x)Px(y)

)
for all y ∈ Rd, y 6= x. (5)

As in Part XIV, the correction (5) has a simple interpretation as applying a filter which either
accepts the proposal distribution or does not move, with an acceptance probability proportional
to how “reversible” the proposals are for the relevant pair of points. Finally, when the transition
distributions {Tx}x∈Rd of a Markov chain on Rd are clear from context, we use T π to denote the
density resulting from applying one step of the Markov chain to a point drawn from π.

2In Sections 4 and 5, we focus on the specific case where π?(x) ∝ Ix∈K, for convex K ⊆ Rd.
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2.2 Mixing from conductance
In this section, we introduce a continuous definition of the conductance of a random walk, which
is used to analyze mixing, and is patterned off of the discrete analog in Definition 6, Part XIV.

Definition 1 (Conductance). For a random walk on Rd with stationary distribution π? and lazy,
reversible transition distributions {Tx}x∈Rd , we denote the flow out of a set S ⊆ Rd by

Q(S) :=

∫
x∈S
Tx(Sc)π?(x)dx =

∫
x∈Sc

Tx(S)π?(x)dx, (6)

where Sc := Rd \ S. We define the conductance of the random walk by

Φ := inf
0<π?(S)≤ 1

2

Q(S)

π?(S)
. (7)

We note that the equality (6) holds because of the calculation∫
x∈S
Tx(Sc)π?(x)dx =

∫
x∈S

∫
y∈Sc

Tx(y)π?(x)dydx

=

∫
x∈S

∫
y∈Sc

Ty(x)π?(y)dydx =

∫
y∈Sc

Ty(S)π?(y)dy,

where we applied reversibility and Fubini’s theorem. As in Part XIV, the quantity Q(S)
π?(S) has a

natural interpretation as the probability that one step of a random walk initialized randomly in
S leaves the set. The intuition is again that if the conductance Φ is large, then no set S is a
bottleneck for the random walk, and hence the walk will rapidly mix. In order to quantify this
intuition, we require a few new definitions specialized to the continuous setting.

Definition 2 (Warmness). For densities π0, π
? on Rd, we say π0 is β-warm with respect to π? if

π0(x)

π?(x)
≤ β for all x ∈ Rd.

Definition 3 (Lovasz-Simonovits curve). For a random walk on Rd with stationary distribution
π? and lazy, reversible transition distributions {Tx}x∈Rd , initialized at π0 and with density πk after
k steps for all k ∈ N, we define the Lovasz-Simonovits curve hk : [0, 1]→ [0, 1] for all k ∈ N by

hk(τ) := sup
g∈Gτ

∫
g(x)πk(x)dx− τ, where Gτ :=

{
g : Rd → [0, 1] |

∫
g(x)π?(x)dx = τ

}
. (8)

Definition 2 is fairly straightforward, and it implies in particular that for any S ⊆ Rd that π0(S) ≤
βπ?(S). Definition 3 is somewhat more complicated, but we briefly interpret it here. First, it
is straightforward to check that if π0 is absolutely continuous with respect to π?, then all πk for
k ∈ N are too, so the supremum over Gτ in (8) is achieved by greedily placing mass on points
sorted by the value of πkπ . In other words, the supremum is achieved by a 0-1 set indicator function,
g(x) = Ix∈S , for some S ⊆ Rd. Rewriting (8) where the supremum is taken over S ⊆ Rd,

hk(τ) = sup
S⊆Rd

π?(S)=τ

πk(S)− τ. (9)

Next, the maximum of the above expression over τ ∈ [0, 1] is exactly the first characterization
of the total variation distance from Fact 1, Part XIV. Therefore, to show that πk → π? in total
variation, it suffices to uniformly bound hk over [0, 1], which we now provide the tools for.

Lemma 1. Consider a random walk on Rd with stationary distribution π? and lazy, reversible
transition distributions {Tx}x∈Rd , initialized at π0 and with density πk after k steps for all k ∈ N,
and suppose it has conductance Φ. Then the Lovasz-Simonovits curve (8) satisfies:

hk(τ) ≤ 1

2
hk−1 ((1− 2Φ) τ) +

1

2
hk−1 ((1 + 2Φ) τ) for all τ ∈

[
0,

1

2

]
,

hk(τ) ≤ 1

2
hk−1 (τ − 2Φ(1− τ)) +

1

2
hk−1 (τ + 2Φ(1− τ)) for all τ ∈

[
1

2
, 1

]
.
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Proof. We only prove the former statement, as the latter follows analogously. We observe that hk
is a concave function of τ for all k ∈ N ∪ {0}, since recalling the characterization (9), hk selects
points for the optimal set greedily according to πk

π , which is a decreasing ratio as the π?-measure
of the set τ increases. Next, let S achieve the bound in hk(τ), following (9). We define

g1(x) :=

{
2Tx(S)− 1 x ∈ S
0 x 6∈ S

, g2(x) :=

{
1 x ∈ S
2Tx(S) x 6∈ S

.

By laziness, g1(x) ∈ [0, 1] pointwise (since 2Tx(S) ≥ 1 if x ∈ S); we similarly have g2(x) ∈ [0, 1]
pointwise. Moreover, 1

2 (g1(x) + g2(x)) = Tx(S) for all x ∈ Rd. Thus, letting

τ1 :=

∫
g1(x)π?(x)dx, τ2 :=

∫
g2(x)π?(x)dx,

we have 1
2 (τ1 + τ2) =

∫
Tx(S)π?(x)dx = π?(S) by the definition of stationary measure. Further,

hk(τ) = πk(S)− π?(S) =

∫
Tx(S)πk−1(x)dx− τ

=
1

2

(∫
g1(x)πk−1(x)dx− τ1

)
+

1

2

(∫
g2(x)πk−1(x)dx− τ2

)
≤ 1

2
hk−1(τ1) +

1

2
hk−1(τ2),

where the first line used (2), and the last used that g1 ∈ Gτ1 , g2 ∈ Gτ2 by definition. Finally, we
use the definition of conductance to show that τ1 and τ2 are in fact separated from τ :

τ1 =

∫
x∈S

(2Tx(S)− 1)π?(x)dx = 2

∫
x∈S
Tx(S)π?(x)dx− τ

= 2

∫
x∈S

(1− Tx(Sc))π?(x)dx− τ

= τ − 2

∫
x∈S
Tx(Sc)π?(x)dx = τ − 2Q(S) ≤ (1− 2Φ)τ.

In the last line, we recalled the definitions (6) and (7). This also implies τ2 ≥ (1 + 2Φ)τ , since
earlier we showed 1

2 (τ1 + τ2) = τ . Finally, by concavity of hk−1, we have the conclusion

hk(τ) ≤ 1

2
hk−1(τ1) +

1

2
hk−1(τ2) ≤ 1

2
hk−1 ((1− 2Φ)τ) +

1

2
hk−1 ((1 + 2Φ)τ) .

As a consequence of Lemma 1, we have the following bound on the decay of the Lovasz-Simonovits
curve when the random walk is initialized at a warm start.

Corollary 1. Consider a random walk on Rd with stationary distribution π? and lazy, reversible
transition distributions {Tx}x∈Rd , initialized at π0 and with density πk after k steps for all k ∈ N,
and suppose it has conductance Φ. Let π0 be β-warm with respect to π?. Then,

DTV (πk, π
?) ≤ ε, if k ≥ 2

Φ2
log

(
β

ε

)
.

Proof. We claim that for all τ ∈ [0, 1] and all k ∈ N ∪ {0},

hk(τ) ≤ βmin
(√
τ ,
√

1− τ
)(

1− Φ2

2

)k
. (10)

The conclusion then follows from (10) using (9) and the first definition of total variation distance
from Fact 1, Part XIV, as well as exp(−c) ≥ 1 − c for c ∈ [0, 1]. For k = 0, (10) follows from
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warmness, since (following notation (9)) any S with π?(S) = τ has π0(S) ≤ min(βτ, 1). We proceed
inductively: for τ ∈ [0, 1

2 ], supposing (10) holds for some k − 1, Lemma 1 yields

hk(τ) ≤ 1

2
hk−1((1− 2Φ)τ) +

1

2
hk−1((1 + 2Φ)τ)

≤ β · 1

2

(√
(1− 2Φ)τ +

√
(1 + 2Φ)τ

)(
1− Φ2

2

)k−1

≤ βmin
(√
τ ,
√

1− τ
)(

1− Φ2

2

)k
,

where we used that
√

1− x+
√

1 + x ≤ 2(1− x2

2 ).3 Finally, the case τ ∈ [ 1
2 , 1] is handled analogously

using the other conclusion in Lemma 1, establishing (10) as desired.

The most appropriate comparison to Corollary 1 is Corollary 2, Part XIV, the analogous result
we showed in the discrete setting. Compared to its discrete counterpart, Corollary 1 incurs a
logarithmic dependence on the warmness β rather than (mini∈[d] π

?
i )
−1. This latter quantity is

typically meaningless in the continuous setting when the target density has no atoms.

Recall that Corollary 2, Part XIV was actually established in two steps: we first assumed a
spectral gap on the Markov chain transition operator, and then used Cheeger’s inequality to lower
bound the spectral gap as a function of the conductance. There is an analogous definition in the
continuous setting, where one defines the “spectral gap” to be the decay of the variance of the
relative density πk

π? , which will be formalized in a following lecture. To introduce these ideas, we
mention a few useful definitions here and compare them. First, the total variation convergence
result in Corollary 1 can be slightly modified to directly show that

χ2(πk‖π?) := Eπ?
[(πk
π?
− 1
)2
]

= Varπ?
[πk
π?

]
also decays by a factor of Ω(Φ2) in each iteration (we state such a result shortly). Here, χ2(µ‖π) :=
Varπ[µπ ] is the chi-squared divergence, which satisfies the inequality χ2(µ‖π) ≥ DKL(µ‖π) :=
Eπ[µπ log µ

π ],4 whereDKL(µ‖π) is the KL divergence. Importantly, the continuous analog of Pinsker’s
inequality (see Lemma 7 and Remark 5, Part III), which states that

DKL(µ‖π) ≥ 1

2

(∫
|µ(x)− π(x)|dx

)2

= 2DTV(µ, π)2,

lets us transfer χ2 bounds to DTV bounds. Further, under a β-warm start it is simple to see
that χ2(π0‖π?) ≤ β2, so the aforementioned variance decay result (i.e., χ2(πk‖π?) falls by Ω(Φ2))
recovers Corollary 1 up to constant factors, and yields a stronger bound in general.

One shortcoming of Corollary 1 is that in continuous settings, the warmness β is typically expo-
nential in the dimension. As a simple example, using the uniform distribution on B(0d, 1) as a
warm start for the uniform distribution on B(0d, 2) yields warmness parameter

β =
Vol (B(0d, 2))

Vol (B(0d, 1))
= 2d.

This phenomenon is quite general when scale parameters on the target distribution cannot be
estimated to high precision, and so extraneous log β factors in mixing times result in dimension-
dependent overheads. A natural alternative approach is to directly show that the KL divergence
decays at a linear rate, because the initial KL divergence for a β-warm start π0 is bounded by

DKL (π0‖π?) = Eπ?
[π0

π?
log

π0

π?

]
= Eπ0

[
log

π0

π?

]
≤ log β.

3The choice of the potential function
√
· in the proof is not particularly important. The most important property

is that we use a concave potential function, so that the separation of τ values in Lemma 1 induces negative drift. In
particular, a first-order Taylor approximation of

√
· provides intuition for the calculation used here; the first-order

terms cancel, and the second-order terms induce a negative quadratic in Φ by concavity.
4One way to see this is by combining the facts that χ2(µ‖π) dominates the Rényi divergence of order 2, DKL is

the Rényi divergence of order 1, and Rényi divergences are monotone in the order.
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Therefore, establishing this type of entropy decay (rather than variance decay) results in mixing
time overheads of log log β, which is O(log d) rather than O(d) when β = exp(Θ(d)). These types
of entropy decay bounds, which are called modified log-Sobolev inequalities in the literature (see
[BT03]), are typically harder to come by than the simpler spectral gap bounds which imply variance
decay, though we will see some examples of entropy decay later in the course.

Finally, we mention an extension of Corollary 1 which we find useful in applications. In particular,
the following extension due to [CDWY20] (building upon average conductance frameworks from
[LK99, GMT06]) handles situations where uniform conductance bounds do not hold due to small
sets with poor behavior, and also sometimes removes extraneous log β factors.

Proposition 1 (Lemma 3, [CDWY20]). Let ε ∈ (0, 1), and consider a random walk on Rd with
stationary distribution π? and lazy, reversible transition distributions {Tx}x∈Rd , initialized at π0

and with density πk after k steps for all k ∈ N. Let π0 be β-warm with respect to π?, and suppose
Ω ⊆ Rd has m := π?(Ω) ≥ 1− ε2

3β2 . For all τ ∈ (0, m2 ], define (following notation (6))

ΦΩ(τ) := inf
S⊆Ω

π?(S)≤τ

Q(S)

π?(S)
. (11)

Then,

χ2 (πk‖π?) ≤ ε, if k ≥
∫ m

2

4
β

16

τΦΩ(τ)2
dτ +

32

ΦΩ(m2 )2
log

(
4

ε

)
.

We pause to interpret Proposition 1. First, because ΦΩ(τ) is decreasing as τ increases because the
definition (11) includes more sets, in the special case Ω = Rd and m = 1, so Φ = ΦΩ(m2 ) is the
standard conductance (Definition 1), the bound in Proposition 1 is never worse than

32

∫ 4
ε

4
β

1

τΦ2
dτ = Θ

(
1

Φ2
log

(
β

ε

))
.

This matches Corollary 1 up to a constant factor, and bounds the χ2 divergence rather than the
smaller DTV, giving a stronger bound. Further, Proposition 1 allows for excluding a small set with
poor behavior, which can be useful on random walks in Rd where “far away” points are difficult to
control, but also are unlikely under π?. Finally, if one can prove a bound on ΦΩ(τ) which improves
with τ , Proposition 1 can lead to significantly sharper mixing time estimates. For example, suppose

ΦΩ(τ) = Ω

(
Φ

√
log

1

τ

)
,

which is the case for Gaussian densities (and more generally, distributions with strongly convex
negative log-densities, see e.g., Theorem 2.7 in [Led99]). Then, the bound in Proposition 1 reads5

k &
∫ m

2

4
β

1

τ log( 1
τ ) · Φ2

dτ +
1

Φ2
log

1

ε
&

1

Φ2
log log β + log β +

1

Φ2
log

1

ε
,

where we used that the antiderivative of (τ log( 1
τ ))−1 is log log 1

τ . This can improve mixing times
by dimension-dependent factors, when initialized at a “cold start” of quality β = exp(Θ(d)).

2.3 Boosting
In this section, we give a generic reduction inspired by the boosting result shown in Corollary 1,
Part XIV for discrete Markov chains. Specifically, we show that if a Markov chain requires Tmix
iterations to achieve constant total variation distance, where Tmix has a logarithmic overhead in
the initial warmness, then it mixes to ε total variation distance in roughly Tmix log 1

ε iterations. As
in Corollary 1, Part XIV, this section will not make use of reversibility, so it applies generically.

kjtian: This section is Homework IV, Problems 1 and 5. I will update when it is due.
5The additive log β term arises because ΦΩ(τ) ≤ 1 for all τ .
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3 Conductance via isoperimetry and transition overlaps
We established in Corollary 1 and Proposition 1 that to bound the mixing time (in DTV or χ2,
respectively), it suffices to lower bound the conductance. In this section, we give a geometric
argument by [LS93] which reduces conductance bounds to bounding two quantities which are
typically simpler to reason about in applications. We define below the first such quantity.

Definition 4 (Isoperimetry). Let π? be a density on Rd, and let m : Rd × Rd → R≥0 be a metric.
We say that π? has isoperimetric constant ψ if, for any partition6 S1, S2, S3 of Rd,

π?(S3)

m(S1, S2)π?(S1)π?(S2)
≥ ψ,

where we let m(S, T ) := minx∈S,y∈T m(x,y) for S, T ⊆ Rd.

Importantly, the isoperimetric constant in Definition 4 is a function of only the target distribution
π?, and has no dependence on the transition distributions {Tx}x∈Rd . This definition isolates a geo-
metric property of the distribution, which can be reasoned about separately. To gain some intuition
for Definition 4, note that when S3 is taken to be an infinitesimally small strip on the boundary
between S1 and S2, then

π?(S3)
m(S1,S2) is essentially the surface area of the boundary. Therefore, in this

case Definition 4 reduces to a lower bound on surface area-to-volume ratios.

To provide some intuition on isoperimetry, we prove a classical fact in high-dimensional geometry.

Proposition 2. Among all compact K ⊆ Rd with a fixed volume Vol(K), the minimum surface
area is achieved when K is a ball of radius (Vol(K)

Vd
)

1
d .

Proof. It is standard that another way to define the surface area of a set K ⊆ Rd is

Vol(∂K) = lim
ε→0+

Vol(K ⊕ B(0d, ε))−Vol(K)

ε
,

where ⊕ is the Minkowski sum. The Brunn-Minkowski inequality (Theorem 5, Part I) then shows

Vol(K ⊕ B(ε))
1
d ≥ Vol(K)

1
d + Vol(B(ε))

1
d

=⇒ lim
ε→0+

Vol(K ⊕ B(ε))−Vol(K)

ε
≥ lim
ε→0+

(Vol(K)
1
d + Vol(B(ε))

1
d )d −Vol(K)

ε

= d ·Vol(K)
d−1
d Vol(B(1))

1
d .

It is well-known that Vol(∂B(1)) = d ·Vol(B(1)), which can be derived via

Vol(B(1)) =

∫ 1

0

rd−1Vol(∂B(1))dr =
1

d
Vol(∂B(1)). (12)

Hence, for r := (Vol(K)
Vd

)
1
d ,

Vol(∂K)

Vol(K)
≥ d ·

(
Vd

Vol(K)

) 1
d

=
Vol (∂B(r))

Vol (B(r))
.

The second quantity used in our conductance lower bound framework can informally be thought
of as an overlap bound between “nearby” transition distributions, where the notion of nearby is
compatible with Definition 4. Specifically, we assume that

DTV (Tx, Ty) ≤ 1

2
for all x,y ∈ Rd with m(x,y) ≤ ∆. (13)

The bound (13) is a local property of transition distributions, because it only needs to hold for pairs
of nearby points (x,y). We next give a representative result which shows how to lift local bounds
of the form (13) and establish conductance lower bounds, a global property, via isoperimetry.

6That is,
⋃
i∈[3] Si = Rd and Si ∩ Sj = ∅ for all i 6= j.
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Proposition 3. Consider a random walk on Rd with stationary distribution π? and lazy, reversible
transition distributions {Tx}x∈Rd . Suppose that π? has isoperimetric constant ψ, and that (13)
holds. Then the conductance of the random walk satisfies

Φ ≥ min

(
1

8
,

∆ψ

64

)
.

Proof. Choose an arbitrary set S ⊆ Rd with 0 < s := π?(S) ≤ 1
2 , so our goal is to lower bound

Q(S)
s by the stated quantity. Define the following sets:

S1 :=

{
x ∈ S | Tx(Sc) <

1

4

}
, S2 :=

{
x ∈ Sc | Tx(S) <

1

4

}
, S3 := Rd \ (S1 ∪ S2) .

Intuitively, S1 and S2 are the points deep in S and Sc respectively, since they are unlikely to cross
after one random walk step. Note that for x ∈ S1, y ∈ S2, we have DTV(x,y) > 1

2 , and therefore
m(x,y) > ∆ due to the assumption (13). If π?(S1) < 1

2π
?(S), then

Q(S) ≥
∫
x∈S3∩S

Tx(Sc)π?(x)dx ≥ 1

4
π?(S3 ∩ S) ≥ s

8
.

Similarly, if π?(S2) < 1
2π

?(Sc), then

Q(S) ≥
∫
x∈S3∩Sc

Tx(S)π?(x)dx ≥ 1

4
π?(S3 ∩ Sc) ≥

1− s
8
≥ s

8
.

Finally, if both π?(S1) ≥ 1
2π

?(S) and π?(S2) ≥ 1
2π

?(Sc), we have

Q(S) =
1

2

(∫
x∈S
Tx(Sc)π?(x)dx +

∫
x∈Sc

Tx(S)π?(x)dx
)

≥ 1

8

∫
x∈S3

π?(x)dx =
π?(S3)

8
≥ ∆ψπ?(S1)π?(S2)

8
≥ ∆ψs

64
.

In the second-to-last inequality, we used our earlier conclusion m(S1, S2) ≥ ∆, and the definition of
ψ; in the last inequality, we used our assumptions π?(S1) ≥ 1

2π
?(S) and π?(S2) ≥ 1

2π
?(Sc) ≥ 1

4 .

There are various extensions to the proof strategy in Proposition 3, for example handling sets of
smaller measure or excluding ill-behaved regions, as suggested by Proposition 1; we will require
one such extension in Section 5. Nonetheless, the overall strategy of lower bounding an appropriate
notion of isoperimetry (potentially restricted to specific subsets) and establishing the overlap of
nearby transition distributions remains as a common theme. In the rest of this lecture, we give
techniques for reasoning about these quantities, specialized to uniform sampling of convex bodies.

4 Localization
Up to this point, our development has not made any structural assumption about the target
distribution π? (or the transition distributions {Tx}x∈Rd). We now provide an isoperimetric in-
equality which is specific to logconcave densities π?, in order to introduce a powerful tool: the
localization lemma, first shown by [LS93, KLS95]. The localization lemma states, at a high level,
that the boundary points of the set of logconcave densities satisfying one linear inequality are
one-dimensional and logaffine. This is extremely useful when maximizing linear functions of log-
concave densities subject to one constraint, since it means we only need to establish the inequality
for one-dimensional, logaffine densities. To make these statements precise, we give a convenient
formulation of the localization lemma from [FG04], building upon [LS93, KLS95].7

Proposition 4 (Theorem 1, [FG04]). Let K ⊂ Rd be compact and convex, and let f : K → R
be upper semicontinuous. Let P(f) be the set of logconcave densities π : K → R≥0 satisfying∫
x∈K f(x)π(x)dx ≥ 0. All boundary points8 of Conv(P(f)) satisfy one of the following.

7The statement in [FG04] is more general than Proposition 4, as it gives a complete characterization of extreme
points, allows for multiple constraints, and extends to s-concave distributions, which generalizes logconcavity.

8Recall from Lemma 3, Part I that the boundary points of a convex set S are points x ∈ S such that there do
not exist x′,x′′ ∈ S and λ ∈ (0, 1) such that x = (1− λ)x′ + λx′′.

8



1. π is a Dirac measure at a point x ∈ K where f(x) ≥ 0.

2. π is a logaffine distribution satisfying
∫
f(x)π(x)dx = 0, and is supported on a one-dimensional

subspace, i.e., for some γ ∈ R and a,b ∈ K, we have

π(x) ∝

{
exp (γt) x = (1− t)a + tb for some t ∈ [0, 1]

0 otherwise
. (14)

Densities of the form (14) are often called exponential needles, because they are truncated expo-
nential distributions over one-dimensional “needles” within K. We first briefly sketch the proof of
Proposition 4, deferring more details to [FG04]. Suppose for the sake of contradiction that there is
a boundary point π of Conv(P(f)) with dimS ≥ 2, where S is the least affine subspace containing
the support of π. Let x0 ∈ S and let E ⊆ S be an arbitrary two-dimensional subspace, such that
x0 ⊕ E ⊆ S. Let C(E) be the unit circle in E, and for any u ∈ C(E) denote

H+
u := {x ∈ S | 〈x− x0,u〉 > 0} , H−u := {x ∈ S | 〈x− x0,u〉 < 0} .

By choosing x0 in the relative interior of the support of π, we can ensure that π(H+
u ), π(H−u ) > 0

for all u ∈ C(E). Next, define φ : C(E) → R by φ(u) :=
∫
x∈H+

u
f(x)π(x)dx − 1

2

∫
f(x)π(x)dx.

Note that φ is a continuous function of u, and further φ(u) = −φ(−u) for all u ∈ C(E).9 The
intermediate value theorem then gives u ∈ C(E) with φ(u) = 0, so that π+ and π−, the restrictions
of π to H+

u and H−u , have
∫
f(x)π+(x)dx ≥ 0 and

∫
f(x)π−(x)dx ≥ 0. Finally, we can write π as

a nontrivial convex combination of π+ and π−, so π is not a boundary point of Conv(P(f)).

Similar arguments are then used to decompose any one-dimensional elements of P(f) which do
not satisfy

∫
fπdx = 0, or are not logaffine, so they cannot be boundary points. For the former

property, one can split the measure along the line at any point giving half the value of
∫
fπdx.

For the latter property, the “largest” possible extension of a logconcave function is logaffine, just
as extremal examples of convex functions are affine; one can use this strategy to obtain a logaffine
function which dominates any logconcave function, and split it accordingly. For more details, we
refer the reader to the (fairly short) proof of Proposition 4 in [FG04].

We note that these proofs use relatively little about the structure of logconcave functions; for
example, the one-dimensional argument only used absolute continuity and that restricting to convex
sets preserves logconcavity. Due to this, analogous arguments can be extended to broader families
of distributions; see e.g., Lemma 1 of [GLL+23] for an extension to strongly logconcave densities.

We now give an example use of Proposition 4, in proving a variant of the localization lemma which
is often easier to apply. The key idea, as mentioned previously, is that if we want to prove a linear
inequality for all logconcave functions in some P(f), it suffices to prove the inequality for point
masses and one-dimensional logaffine functions, by using Lemma 3, Part I.

Lemma 2. Let f1 : Rd → R≥0, f2 : Rd → R≥0 be upper semicontinuous and let f3 : Rd → R≥0,
f4 : Rd → R≥0 be lower semicontinuous. Then the following two statements are equivalent.

1. For every logconcave density π : Rd → R≥0,(∫
f1(x)π(x)dx

)(∫
f2(x)π(x)dx

)
≤
(∫

f3(x)π(x)dx
)(∫

f4(x)π(x)dx
)
.

2. For all x ∈ Rd, f1(x)f2(x) ≤ f3(x)f4(x), and for every a,b ∈ Rd and γ ∈ R,(∫ 1

0

f1((1− t)a + tb) exp(γt)dt
)(∫ 1

0

f1((1− t)a + tb) exp(γt)dt
)

≤
(∫ 1

0

f3((1− t)a + tb) exp(γt)dt
)(∫ 1

0

f4((1− t)a + tb) exp(γt)dt
)
.

9To see this, we used that π(Rd \ (H+
u ∪H−u )) = 0. This is a nontrivial fact which follows from a characterization

of logconcave functions in [Bor75], showing that logconcave functions are absolutely continuous with respect to the
Lebesgue measure on the least affine subspace containing their support. Therefore, they place zero measure on any
lower-dimensional subspace, so we can exclude the boundary Rd \ (H+

u ∪H−u ) from consideration.
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Proof. It is obvious that Item 1 implies Item 2, since truncated logaffine functions are also logcon-
cave, so we focus on showing Item 2 implies Item 1. By a limiting argument, it suffices to consider
the case where π is compactly supported on K ⊂ Rd, and

∫
f3(x)π(x)dx > 0. Then, define

f = f1 −
(∫

f1(x)π(x)dx∫
f3(x)π(x)dx

)
f3, g =

(∫
f1(x)π(x)dx∫
f3(x)π(x)dx

)
f2 − f4.

The maximum value of
∫
g(x)µ(x)dx for µ ∈ Conv(P(f)) is achieved by either a Dirac measure or

a one-dimensional logaffine function, by Proposition 4. The fact that µ ∈ Conv(P(f)) implies that∫
f1(x)µ(x)dx−

(∫
f1(x)π(x)dx∫
f3(x)π(x)dx

)∫
f3(x)µ(x)dx ≥ 0

=⇒
∫
f1(x)π(x)dx∫
f3(x)π(x)dx

≤
∫
f1(x)µ(x)dx∫
f3(x)µ(x)dx

.

(15)

Thus, the fact that π ∈ P(f) by definition of f shows the desired(∫
f1(x)π(x)dx∫
f3(x)π(x)dx

)∫
f2(x)π(x)dx−

∫
f4(x)π(x)dx

≤
(∫

f1(x)π(x)dx∫
f3(x)π(x)dx

)∫
f2(x)µ(x)dx−

∫
f4(x)µ(x)dx

≤
(∫

f1(x)µ(x)dx∫
f3(x)µ(x)dx

)∫
f2(x)µ(x)dx−

∫
f4(x)µ(x)dx ≤ 0,

where the second inequality used (15), and the last used the assumption in Item 2.

To demonstrate the utility of Lemma 2, we use it to give a bound on the isoperimetric constant
(Definition 4) for any logconcave density π, parameterized by the average distance of points to its
mean, which we denote (patterning off notation in Theorem 2, Part I) by

x̄π := Ex∼π[x] =

∫
xπ(x)dx. (16)

Lemma 3. Let π : Rd → R≥0 be a logconcave density, and let S1, S2, S3 be a partition of Rd with
minx∈S1,y∈S2

‖x− y‖2 ≥ ∆. Then,

π(S1)π(S2) ≤
Ex∼π[‖x− x̄π‖2]

∆ log 2
· π(S3).

Proof. Let fi(x) := Ix∈Si for i ∈ [3] be the indicator functions associated to the partition, and let
f4(x) := 1

∆ log 2 ‖x− x̄π‖2. Clearly for all x ∈ Rd, we have f1(x)f2(x) = 0 ≤ f3(x)f4(x). Thus, to
obtain the conclusion, Lemma 2 states that it suffices to show that for all a,b ∈ Rd and γ ∈ R,(∫ 1

0

I(1−t)a+tb∈S1
exp(γt)dt

)(∫ 1

0

I(1−t)a+tb∈S2
exp(γt)dt

)
≤ 1

∆ log 2

(∫ 1

0

I(1−t)a+tb∈S3
exp(γt)dt

)(∫ 1

0

‖(1− t)a + tb− x̄π‖2 exp(γt)dt
)
.

We next observe that changing x̄π to its projection on the line between a,b, i.e., some point
(1− u)a + ub for u ∈ [0, 1], can only decrease the right-hand side above. Moreover, we redefine

Ii := {t ∈ [0, 1] | (1− t)a + tb ∈ Si} for all i ∈ [3],

so that mint∈I1,t′∈I2 ‖((1− t)a + tb)− ((1− t′)a + t′b)‖2 = mint∈I1,t′∈I2 |t − t′| ‖a− b‖2 ≥ ∆.
Therefore, rescaling ∆ by a factor of ‖a− b‖2, our problem reduces to showing that for any
partition I1, I2, I3 of [0, 1] with mint∈I1,t′∈I2 |t− t′| ≥ ∆, and for any u ∈ [0, 1],(∫

t∈I1
exp(γt)dt

)(∫
t∈I2

exp(γt)dt
)
≤ 1

∆ log 2

(∫
t∈I3

exp(γt)dt
)(∫ 1

0

|u− t| exp(γt)dt
)
. (17)
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In the case when I1, I2, and I3 are single intervals (where the length of I3 is at least ∆), the proof
of (17) is carried out using elementary arguments in Theorem 5.2, [KLS95], which we omit here.
We instead discuss how to reduce to this particular case for general partitions, which is a core part
of localization arguments. First, we may assume that I3 is open by moving a measure zero set of
endpoints which does not affect the inequality. Next, every interval in I3 has length at least ∆,
since any shorter interval must have both endpoints in I1 or I2, and hence can be moved to the
corresponding partition piece which only makes (17) tighter. Under these simplifications, we can
write I3 =

⋃
j∈[k](tj , uj) for a finite k. Applying (17) to each interval (tj , uj) and summing,

∑
j∈[k]

(∫ tj

0

exp(γt)dt
)(∫ 1

uj

exp(γt)dt

)
≤ 1

∆ log 2

(∫
t∈I3

exp(γt)dt
)(∫ 1

0

|u− t| exp(γt)dt
)
.

The claim follows since every pair of intervals in I1 and I2 are separated by some (tj , uj), so

∑
j∈[k]

(∫ tj

0

exp(γt)dt
)(∫ 1

uj

exp(γt)dt

)
≥
(∫

t∈I1
exp(γt)dt

)(∫
t∈I2

exp(γt)dt
)
.

We mention that the proof of Lemma 3 uses nothing specific about x̄π, so it can be replaced with
an arbitrary point. One reason why the bound with x̄π in particular is useful is because

Ex∼π [‖x− x̄π‖2] ≤
√

Ex∼π

[
‖x− x̄π‖22

]
=

√√√√√√√Tr

Ex∼π

[
(x− x̄π) (x− x̄π)

>
]

︸ ︷︷ ︸
:=Covπ

. (18)

In other words, Lemma 3 proves that the isoperimetric constant (Definition 4) of any logconcave
density π : Rd → R≥0 with respect to the `2 norm is lower bounded by

log 2√
Tr(Covπ)

.

This result was first established by [KLS95], and shows that e.g. if π is isotropic (meaning Covπ =

Id), the isoperimetric constant is Ω(d−
1
2 ). The authors of [KLS95] conjectured that this bound

could be improved to Ω(‖Covπ‖−1
op ), which has since come to be called the KLS conjecture, a

deep result in probability theory which has intimate connections with various other results in
mathematics (see [LV17b] for an extended discussion of these connections).

Recently, there has been tremendous progress on the KLS conjecture. First, [Eld13] developed a
technique known as stochastic localization, which simulates the localization process in Proposition 4
which decomposes a measure into low-dimensional pieces, not by bisection, but rather by gradually
adding a Gaussian component. We cover this technique in detail in a future lecture, as it closely-
related to modern techniques for training diffusion models [Mon23].

The reason this technique is useful in the context of isoperimetry is because the KLS conjecture
is much simpler to establish for Gaussians, and indeed [LV17a] built upon [Eld13] to show that
the isoperimetric constant of logconcave π is bounded by Ω(‖Covπ‖−1

F ), which is Ω(d−
1
4 ) in the

isotropic case. By bootstrapping the arguments of [Eld13, LV17a], a breakthrough was made by
[Che21], who finally proved that the KLS conjecture is true up to a do(1) factor. We state here the
current state-of-the-art bound on the isoperimetric constant of logconcave distributions.

Proposition 5 (Theorem 1.2, [Kla23]). There is a universal constant C > 0 such that for any
logconcave density π : Rd → R≥0, the isoperimetric constant ψ of π with respect to ‖·‖2 satisfies

ψ ≥ 1

C
√

log d
· 1√
‖Covπ‖op

.
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5 Ball walk analysis
In this section, we finally apply the results of Sections 2, 3, and 4 to a specific Markov chain for
sampling from the uniform density over a convex body K ⊆ Rd. We fix the notation

π?(x) :=
1

Vol(K)
· Ix∈K (19)

throughout the section; by observation, π? is logconcave because K is convex.

We primarily focus on providing intuition for how to adapt our machinery to this setting, un-
der several simplifying assumptions, rather than giving all of the technical details (which can be
found in the original source material). In later lectures, we discuss how to relax our simplifying
assumptions and dramatically streamline the analysis, using more sophisticated tools.

Following the notation (16), (18), we begin by making the assumption that π? is isotropic:

Covπ? := Ex∼π?
[
(x− x̄π)(x− x̄π)>

]
= Id, where x̄π? := Ex∼π? [x]. (20)

One convenient fact about isotropic convex bodies is that they are decently-approximated by balls.

Fact 1 (Theorem 4.1, [KLS95]). For any convex body K ⊆ Rd satisfying (20), we have

B (1) ⊆ K ⊆ B (d+ 1) .

We omit the proof of Fact 1 as it is somewhat tedious, deferring details to [KLS95]. Intuitively, the
lower bound in Fact 1 holds because any one-dimensional projection being contained in an interval
of length o(1) would contradict the covariance being lower-bounded by 1 in all directions.

As a basic building block, we define the ball walk transition operators, denoted {Tx}x∈K throughout
the section. The ball walk operator Tx first returns x with probability 1

2 (so it is lazy). Otherwise,
it uniformly samples y ∼ B(x, η) for a step size η > 0, and then updates x to y if y ∈ K, else
staying at x. This filter in the latter case preserves reversibility, as it is the result of a Metropolis
filter (5) applied to the lazy proposal distributions Px which uniformly sample a point in B(x, η).
To make this definition simpler to state, we define the local conductance at x,

`(x) :=
1

Vol(B(x, η))

∫
y∈B(x,η)

Iy∈Kdy =
Vol (B(x, η) ∩ K)

Vol(B(x, η))
(21)

to be the probability of accepting a step. Drawing x′ ∼ Tx can then be concisely stated as

x′ ←

{
x with probability 1− 1

2`(x)

a uniform draw from B(x, η) ∩ K with probability 1
2`(x)

. (22)

Due to the way we set up the Metropolis-Hastings filter, the stationary distribution of the {Tx}x∈Rd

is indeed π?. We finally mention one useful property of `(x) which is used later.

Lemma 4. The local conductance ` defined in (22) is logconcave.

Proof. Logconcavity is preserved by multiplication by a constant, so it suffices to prove that∫
y∈B(x,η)

Iy∈Kdy is logconcave. This follows because it is the convolution of the logconcave in-
dicator functions of B(0d, η) and K, so the claim follows from Corollary 2, Part I.

5.1 Overlap bounds
In order to bound the conductance of the ball walk, Proposition 3 requires an isoperimetric constant
bound, as well as a distance ∆ such that (13) holds. From Proposition 5 and the assumption (20),
we know that we can take ψ−1 = O(

√
log d), so we wish to get a handle on the ∆ parameter in

(13) where m is the `2 distance. To this end, we note that for two points x,x′,

DTV (Tx, Tx′) ≤ DTV (Px,Px′) +DTV (Tx,Px) +DTV (Tx′ ,Px′)

≤ DTV (Px,Px′) +
1

2
(1− `(x)) +

1

2
(1− `(x′)) ,

(23)
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where Px is the aforementioned lazy proposal distribution, which with probability 1
2 draws a

uniform point from B(x, η). Because Px and Px′ are uniform distributions over nearby balls when
they are not lazy, their total variation distance enjoys a simple closed-form formula:

DTV (Px,Px′) =
Vol (B(x, η) \ B(x′, η))

2Vol(B(x, η))
=

Vol (B(x′, η) \ B(x, η))

2Vol(B(x′, η))
. (24)

We therefore provide a simple geometric lemma bounding the overlap of nearby balls.

Lemma 5. Let η > 0, and suppose x,x′ ∈ Rd satisfy ‖x− x′‖2 = αη√
d
. Then,

Vol (B(x, η) \ B(x′, η))

Vol(B(x, η))
≤ α.

Proof. The statement is invariant to shifts, rotations, and rescalings, so we may assume η = 1,
x = 0d, and x′ = βe1 for simplicity, where β := α√

d
. We recall the formula

Vd := Vol (B(0d, 1)) =
π
d
2

Γ
(
d
2 + 1

) , (25)

where Γ is Euler’s gamma function, satisfying Γ(n+ 1) = n! for any n ∈ N. We can hence compute

Vol(B(0d, 1) \Vol(B(βe1, 1)))

Vol(B(0d, 1))
=

1

Vd

∫ β
2

−1

Vd−1 ·
(√

1− r2
)d−1

dr

− 1

Vd

∫ − β2
−1

Vd−1 ·
(√

1− r2
)d−1

dr

=
Vd−1

Vd

∫ β
2

− β2

(√
1− r2

)d−1

dr ≤ βVd−1

Vd
.

The first equality above followed because the symmetric difference of the two balls falls left of β2 e1

along the first coordinate axis, so we directly computed how much volume of each ball falls left of
this point and take the difference. The conclusion follows from the inequality

Vd−1

Vd
=

Γ(d2 + 1)
√
πΓ(d−1

2 + 1)
≤
√
d.

In conclusion, as long as two points x,x′ have local conductances `(x), `(x′) ≥ 3
4 , combining (23),

(24), and Lemma 5 shows that ‖x− x′‖2 ≤
η

2
√
d
implies DTV(Tx, Tx′) ≤ 1

2 , as required by (13).
We will discuss the issue of requiring large local conductances in the following sections. For now,
we remark that [KLS97] established a strengthening of the argument in this section by reasoning
more carefully about the relative volume of balls when intersecting with K. In particular, they
showed the following multiplicative variant of Lemma 5 which holds after intersection.

Lemma 6 (Lemma 3.5, [KLS97]). If x,x′ ∈ K for compact, convex K ⊆ Rd have ‖x− x′‖2 ≤
η√
d
,

Vol (K ∩ (B(x, η) ∩ B(x′, η)))

Vol(B(x, η))
≥ 1

4
min {`(x), `(x′)} .

As a useful corollary of Lemma 6, we show how to bound the “crossing over” probability of nearby
points on different sides of a partition, in line with what was used by the proof of Proposition 3.

Corollary 2. For convex K ⊆ Rd, let S ⊆ K, and denote Sc := K\S. For any x ∈ S and x′ ∈ Sc
with ‖x− x′‖2 ≤

η√
d
and `(x) ∈ [ 2

3`(x
′), 3

2`(x
′)],

Tx(Sc)

`(x)
+
Tx′(S)

`(x′)
≥ 1

18
.

13



Proof. By the definition of our lazy transition operators {Tx}x∈Rd , we have

Tx(Sc) =
Vol(Sc ∩ B(x, η))

2Vol(B(x, η))
≥ Vol(Sc ∩ (B(x, η) ∩ B(x′, η)))

2Vol(B(x, η))
,

and similarly,

Tx′(S) ≥ Vol(S ∩ (B(x, η) ∩ B(x′, η)))

2Vol(B(x′, η))
.

By summing these inequalities and applying Lemma 6, we hence have

Tx(Sc) + Tx′(S) ≥ 1

8
min {`(x), `(x′)} .

Dividing both sides by `(x) and using the assumptions then gives the claim.

5.2 Speedy walk
As stated, Corollary 2 is incompatible with Proposition 3, due to the normalization by `(x).
However, there is a related random walk called the speedy walk for which Corollary 2 does imply
a mixing bound. We define it in this section and prove some basic facts about its convergence.

In short, the speedy walk is the ball walk, except all “wasted nonlazy steps” are skipped. In other
words, with probability 1

2 a transition of the speedy walk starting from x does not move; else, it
steps to a uniformly random point in B(x, η) ∩ K. The transitions of the speedy walk, denoted
{T̃x}x∈K (to contrast with Tx in (22)) are thus defined as follows: x′ ∼ T̃x follows

x′ ←

{
x with probability 1

2

a uniform draw from B(x, η) ∩ K with probability 1
2

. (26)

Lemma 7. The speedy walk (26) with transition distributions {T̃x}x∈K is reversible, and its sta-
tionary distribution is π̃?, the distribution proportional to ` over K, defined as follows:

π̃?(x) =

{
`(x)
λ(K) ·

1
Vol(K) x ∈ K

0 else
, (27)

where λ(K) is the average local conductance over K,

λ(K) :=
1

Vol(K)

∫
x∈K

`(x)dx = Ex∼π? [`(x)] . (28)

Proof. Reversibility is immediate from the fact that for all x,x′ ∈ K with x 6= x′,

π̃?(x)T̃x(x′) =
`(x)

λ(K)Vol(K)
· 1

2Vol(B(x, η) ∩ K)
=

1

λ(K)Vol(K)
· 1

2Vol(B(x, η))

=
1

λ(K)Vol(K)
· 1

2Vol(B(x′, η))
= π̃?(x′)T̃x′(x),

where the second equality used (21). Now (4) implies that π̃? is the stationary distribution.

Of course, it is not obvious how to implement a step of the speedy walk from x ∈ K using only a
membership oracle. A simple way is to continue drawing random points in B(x, η) until it falls in
K; the distribution of the resulting point is clearly uniform in B(x, η)∩K. We bound the expected
number of such draws assuming that the current distribution is warm with respect to π?.

Lemma 8. Let π be β-warm with respect to π̃? defined in (27). Then,

Ex∼π

[
1

`(x)

]
≤ β

λ(K)
.
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Proof. This follows from a direct computation: recalling the definition (27),∫
x∈K

1

`(x)
π(x)dx ≤ β

∫
x∈K

1

`(x)
π?(x)dx =

β

λ(K)
· 1

Vol(K)

∫
x∈K

dx =
β

λ(K)
.

Note that 1
`(x) is the expected number of queries to a membership oracle needed before a random

draw from B(x, η) is found to fall in K. Thus, Lemma 8 shows that a step of the speedy walk from
a β-warm distribution can be implemented in ≈ β steps, provided λ(K) is at least a constant. We
next bound how much our reweighting of π? by `(x) affects the covariance.

Lemma 9. For π̃? defined in (27), we have following notation (18) that

Covπ̃? �
1

λ(K)
Covπ? .

Proof. We recall that

Covπ̃? = Ex∼π̃?
[
(x− x̄π̃?)(x− x̄π̃?)>)

]
=

1

λ(K)Vol(K)
·
∫
x∈K

`(x)(x− x̄π̃?)(x− x̄π̃?)>dx,

Covπ? = Ex∼π?
[
(x− x̄π?)(x− x̄π?)>

]
=

1

Vol(K)

∫
x∈K

(x− x̄π?)(x− x̄π?)>dx.

Hence, it suffices to show that∫
x∈K

`(x)(x− x̄π̃?)(x− x̄π̃?)>dx �
∫
x∈K

(x− x̄π?)(x− x̄π?)>dx,

which follows because `(x) ∈ [0, 1] pointwise, and

Ex∼π̃? [(x− x̄π?)(x− x̄π?)] = Ex∼π̃? [(x− x̄π̃?)(x− x̄π̃?)] + (x̄π̃? − x̄π?)(x̄π̃? − x̄π?)>

� Ex∼π̃? [(x− x̄π̃?)(x− x̄π̃?)] .

At this point we can almost directly combine our relative overlap bound (Corollary 2) with our
isoperimetry bound (Lemma 3 using (18) and Lemma 9) to obtain a conductance lower bound
on the speedy walk, via Proposition 3. There is one complication, which is that Corollary 2 can
only compare points whose local conductances are close. To bypass this, [KLS97] define a hybrid
distance which both compares the Euclidean distance and the relative change in `. They show that
both cases can be handled via localization, and prove the following conductance lower bound.

Corollary 3 (Theorem 3.1, [KLS97]). The conductance of the speedy walk (26) is

Ω

(
η
√
λ(K)

d1.5

)
.

Intuitively, we expect to lose one η√
d
factor from the distance required by Corollary 2, and one√

λ(K)/d factor from the isoperimetry in Lemmas 3 and 9. The remaining factor of
√
d lost in

Corollary 3 is because the argument for the local conductance distance depends on the diameter
of the convex body, which scales as ≈ d in Fact 1. Ultimately many of these poly(d) factors can
be shaved by using the more streamlined analysis tools we develop in later lectures.

5.3 Average local conductance
By applying Corollary 3 within Corollary 1, we see that the speedy walk rapidly mixes to its
stationary distribution, π̃?. Moreover, as long as each iteration of the speedy walk is β-warm with
respect to π̃?, then steps can be implemented efficiently using Lemma 8. What is left is to control
the distance between π̃? and the actual uniform distribution of interest, π?.

We begin by characterizing DTV(π?, π̃?) in terms of the average local conductance λ(K).
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Lemma 10. For π?, π̃? defined in (19), (27) respectively, DTV(π?, π̃?) ≤ 1− λ(K).

Proof. This is a direct calculation, using the formula for DTV in Definition 4, Part XIV:

DTV (π?, π̃?) =
1

2

∫
x∈K

∣∣∣∣ 1

Vol(K)
− `(x)

λ(K)Vol(K)

∣∣∣∣ dx
≤ 1

2Vol(K)

∫
x∈K
|1− `(x)| dx +

1

2Vol(K)

∫
x∈K

∣∣∣∣ `(x)

λ(K)
− `(x)

∣∣∣∣ dx
=

1

2
(1− λ(K)) +

1

2
(1− λ(K)) = 1− λ(K).

The only inequality was the triangle inequality, and the last line used `(x) ∈ [0, 1] and λ(K) ≤ 1.

We are left with estimating the average local conductance λ(K) = Ex∼π? [`(x)] as a function of the
step size η. We can relate these quantities via the isoperimetry of K as follows.

Fact 2 (Corollary 4.5, [KLS97]). Let K ⊆ Rd be convex, and let ∂K denote the boundary of its
closure. Then,

λ(K) ≥ 1− η

2
√
d
· Vol(∂K)

Vol(K)
.

Fact 2 lets us lower bound the average local conductance of an isotropic set, by using Fact 1.

Corollary 4. For any convex K ⊆ Rd satisfying (20), we have DTV(π?, π̃?) ≤ η
√
d

2 .

Proof. We first apply Fact 1, which shows K contains a unit ball. Along each unit vector projec-
tion of the body, the surface area-to-volume ratio is monotone decreasing in the length r of the
projection, because the former scales as rd−1 and the latter as rd. Therefore, by (12),

Vol(∂K)

Vol(K)
≤ Vol(∂B(0d, 1))

Vol(B(0d, 1))
= d.

Plugging this bound into Fact 2 gives λ(K) ≥ 1− η
√
d

2 , and then Lemma 10 gives the claim.

At this point, we have given all the tools needed to obtain the following sampling guarantee.

Theorem 1. Let K ⊆ Rd be convex and satisfy (20), and define π? as in (19). We can produce
a sample within ε total variation distance from π?, given an initial point drawn from a β-warm
distribution for π?, using poly(d, β, 1

ε ) queries to a membership oracle for K in expectation.

Proof. First, let η = ε√
d
, so that Corollary 4 shows that DTV(π?, π̃?) ≤ ε

2 . Next, Corollaries 1
and 3 show that, letting πk be the distribution of the kth speedy walk iterate initialized at π0, we
can achieve DTV(πk, π̃

?) ≤ ε
2 as long as

k = Ω

(
d3

η2
log

(
β

ε

))
= Ω

(
d4

ε2
log

(
β

ε

))
.

By the triangle inequality we also have DTV(πk, π
?) ≤ ε as desired. Finally, each iteration of the

speedy walk is implementable using O(β) expected queries to a membership oracle by Lemma 8.

Theorem 1 gives us a basic appreciation of the ingredients needed to analyze the convergence of
structured continuous random walks for challenging, but still tractable, distributions. There are
several qualitative weaknesses of Theorem 1: it depends polynomially on the warmness parameter
β and the inverse accuracy 1

ε , and has a rather large dependence on the dimension. The tools we
will soon develop are motivated by these shortcomings and facilitate much sharper bounds.
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Source material
Portions of this lecture are based on reference material in [LS93, KLS95, KLS97], as well as the
author’s own experience working in the field.
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